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Neural Fields (NFs) / Implicit Neural Representations (INRs)

NFs represents signals as continuous coordinate-mapping functions parameterized by a neural net

For instance, an RGB image can be represented as a function taking a form
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This can be learned by a neural network (usually a MLP) with d;, = 2, dgyt =




Why are Neural Fields interesting?

Neural Fields have the potential to be a popular form of data representation in the near future!

» Interesting point 1. Effective at novel view synthesis (or resolution free!) [1,2]
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[1] Chen et al. Learning Continuous Image Representation with Local Implicit Image Function. CVPR 2021
[2] Mildenhall et al. NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images. CVPR 2022



Why are Neural Fields interesting?

Neural Fields have the potential to be a popular form of data representation in the near future!

» Interesting point 2. Represent complex signals [3,4], e.g., large-scale 3d scenes, videos
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[3] Tancik et al. Block-NeRF: Scalable Large Scene Neural View Synthesis. CVPR 2022
[4] Muller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. SIGGRAPH 2022



Why are Neural Fields interesting?

Neural Fields have the potential to be a popular form of data representation in the near future!

» Interesting point 3. Storage efficient [5]
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[5] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022



Why are Neural Fields interesting?

Neural Fields have the potential to be a popular form of data representation in the near future!

« Interesting point 4. NF it-self can be used as a data point! [6,7]
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Generative modeling Inference Classification

Step 1: Fit data points into INRs Step 2: Run downstream tasks, e.g., classification

[6] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
[7] Bauer et al., Spatial Functa: Scaling Functa to ImageNet Classification and Generation. ICLR workshop on Neural Fields 2023



An Obstacle

Q. Can we scale such an idea to a Big Dataset? / How to train a foundation model for NFs?

——_—

Imagine training ImageNet number of these....



An Obstacle

We mainly face three challenges
« how to fit neural fields in a parameter-efficient way
* how to fit neural fields in a time-efficient way

* how to fit neural fields in a memory-efficient way

Need to save a neural network... Training time is costly... Memory issue when learning high-resolution signals...



An Obstacle

GradNCP (this paper)
— time and memory-efficient learning for neural fields
* how to fit neural fields in a time-efficient way

Time and parameter-efficient learning for neural fields?
« how to fit neural fields in a memory-efficient way — Check our prior works [8,9]

Training time is costly... Memory issue when learning high-resolution signals...

[8] Lee et al. Meta-Learning Sparse Implicit Neural Representations. NeurIPS 2021
[9] Schwarz et al., Modality-Agnostic Variational Compression of Implicit Neural Representations. ICML 2023



Time-efficiency: Use Meta-Learning

Prior works have use meta-learning; optimization-based meta-learning shows versatile usages
— |earning a good initialization [10]

Objective?
Find an initialization 6, such that few-step gradients can fit the signal

— meta-learning
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MAML y : signal value

[10] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017



Time-efficiency: Use Meta-Learning

Train over multiple signals (batch of signals):

Ao = argmin, + Zfll 00y — Vg, £(0y;CDY; C)

Hessian computation: memory scales linearly with the number of context set

[10] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017



Time-efficiency: Use Meta-Learning

As the signal resolution increases memory usage rapidly increases
Image with resolution 224 x 224? Context set size of 50,176 (# of input coordinates)

For videos...? we should consider the timestep!

— e.g., 50,176 * 16 (about 800K)

Train over multiple signals (batch of signals):

Ao = argmin, + Zf\il 00y — Vg, £(0y;CDY; C)

Hessian computation: memory scales linearly with the number of context set

[10] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017



High-level overview of GradNCP

Ideal: Select the most important context samples for every adaptation step

Re-rank Re-rank Re-rank
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High-level overview of GradNCP

Idea2: Correct the error made by the context pruning

Re-rank Re-rank Re-rank

Chigh Chigh Chigh Cfull — Second-order

-- First-order
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High-level overview of GradNCP

Idea3: Re-scale the gradient step size when using the full context set during meta-testing
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Re-scale the step size

Meta-train Meta-test
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Gradient norm-based context pruning

How to select important samples efficiently?
» 1. Select a subset of data with the highest expected immediate improvement in model quality

« 2. Consider the last layer update only (quite a reasonable choice for NFs [9], also for meta-learning [11])

0(0k; {(x,y)}) — £(01; {(x,¥)}) (Immediate improvement in model quality)
~ l(0k; {(x,¥)}) — £(0k — agr; {(x,¥)}) (Last layer update only)
~ l(0k; {(x,y)}) — (6 (0k; {(x,¥)}) — agp Vo, £(0k; {(x, y)})) (Taylor approximation)
= agy, Vo, £(0k; {(x,¥y)}) = allgxll3 (Last layer gradient norm)

— This score can be calculated with only a single forward pass

ra T ¢(.): penultimate feature
RPN (x,y) = H(y — Jou. (x)) [¢9§’:‘S" (%), 1] “ £(.): network output

k: inner adaptation step

[9] Schwarz et al., Modality-Agnostic Variational Compression of Implicit Neural Representations, ICML 2023
[11] Raghu et al., Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML, ICLR 2020



Bootstrapped correction

Re-rank Re-rank Re-rank

Chigh Chigh Chigh Cfull — Second-order

---- First-order
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Information loss occurs as we prune out some context points
» Idea: further update the network with the full context set by using the first-order gradients

- After adapting this bootstrapped target 6229, minimize the parameter distance between 6,

This bootstrapped target is also well-known to minimize the myopia (short-horizon bias) of optimization [12]

[12] Flennerhag et al., Bootstrapped Meta-Learning, ICLR 2022



Gradient re-scaling

For meta-testing, we can use first-order gradients for adaptation (second-order is for learning init.)
The gradient step size deviates a lot from meta-train (pruned set) and meta-test (full set)

— Gradient re-scaling: reducing the distributional shift between train/test

 Similar ideas can be found in Dropout (activation scaling) [13]
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Re-scale the step size

[13] Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014
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Overall algorithm

Algorithm 1 Meta-training of GradNCP Algorithm 2 Meta-testing of GradNCP
Input: Initial 6o, {sz}f\]: LY, o, B\ K, L Input: Test signal s, learned initialization g, Ke
1: while not converge do 1: Extract context Cfull from s.
2:  Sample batch {s1,...,sp}. # Where typically Kiese > K + L
3: forallb = 1to Bdo 2: forallt = 0to Kist — 1 do
4. Extract context Csy11 from sp. 3: # Context pruning
5: forallk =0to K — 1do 4:  Chign = TopK(Csu11; Rt,y)
6: # anline Context pruning # ComPUte”vgraCéien(te Séa.li;lﬁ
7: Chigh = TOpK(Cfull; Rk,'Y) ) gzeSt — ||VZ: E::Z(GZ:CE??)” VGt EMSE(Ht, Cfull)
8: Ok—}-l <« Gk — ava LMSE(Qk; Chigh) # Adaptation with full context
0: end for 5. Oip1 0 — - gi%*
10: # Generate target in L steps 6: end for
};: ?{gj—tl — OK - O5v‘9K £MSE (OK? Cflﬂl) Output: LMSE(OT, Cfu]_l), 9’[’
13: Lgotal = ACMSE(OK, Cfull) + A,U,(oK, etl)g?lfL
14:  end for

15: Oy <+ 6y — ,8% Zszl veoﬁgotal
16: end while
Output: 6o




Visualization

Visualization of the selected context point

« Interestingly, it automatically captures the global shape first, then captures the high-frequency details

« — prior works do this in a hand-craft manner [14]
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[14] Landgraf et al., Pins: Progressive implicit networks for multi-scale neural representations, ICML 2022 20



Results

Efficiency of GradNCP
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Image

Video

Results: Quantitative

GradNCP achieves state-of-the-art performance on meta-learning neural fields in all modalities

CelebA (178 x 178) Imagenette (178 x 178) Text (178 x 178) PSNR (1)
Random Init. 19.94/0.532/0.708 18.57/0.443/0.810 15.37/0.574/0.755 .9 Method I'sec  3sec
TransINR [6] 32.37/0.913/0.068 28.58/0.850/0.165 22.70/0.898 /0.085 © TransINR [6] 3922 33.17
IPC [29] 3593/ - [ - 3846/ - | - -/ -/ - = IPC [29] 40.11 35.38
Learnit / MAML [61] 38.28/0.964 /0.010 35.66/0.950/0.014 30.31/0.956/0.018 < Learnit/ MAML [61] 39.55 31.39
GradNCP (Ours) 40.60 / 0.976 / 0.005 38.72/0.972 / 0.005 32.33/0.976 / 0.007 GradNCP (Ours) 4325 36.24
ImageNet (256 x 256)  AFHQ (512 x 512)  CelebA-HQ (1024 x 1024) =
Random Init. 18.72/0.434/0.839 18.57/0.488 /0.856 12.21/0.574/0.820 I=) Method PSNR (1)
TransINR [6] 28.01/0.818/0.199 23.43/0.592/0.573 —— OOM —— ] ;
Learnit / MAML [61] 31.44/0.887/0.100 28.58/0.751/0.354 27.66/0.781/0.513 g éiilr(rllll\tléll\’/[?(l)v[%sg6l] gg?i
GradNCP (Ours) 32.52/0.898 / 0.068 29.61/0.786 / 0.286 28.90/0.789 / 0.438 s u :
Resolution  Network Method PSNR (1) SSIM (1) LPIPS () ¢  Method PSNR
TransINR [6] 15.14 0.360 0.636 LL. .
SIREN Leamnit/MAML [61]  25.46 0.720 0.363 % Iff:‘;g&[gl[%] %g'gg
128 %128 %16 GradNCP (Ours) 26.92 0.781 0.223 => GradNCP (Ours) 2 4: 06
NeRV Learnit MAML) [61] 28.86 0.871 0.140 —_
GradNCP (Ours) 35.28 0.959 0.015 — -ls
TransINR [6] OOM E £ Method 5-way 100-shot  10-way 50-shot
SIREN  Learnit/ MAML [61] OOM Qv
256256532 GradNCP (Ours) 2292 0640 0521 5 '; 1(\;4A1:1/I§§)5]O gg.ggio.sz gg.giio.sz
Negy  Leamit/MAML[61] 2375 0659 0422 (o @ _SrdNCPOury A5 i
GradNCP (Ours) 28.65 0.842 0.201 b

22



Results: Qualitative

GradNCP achieves state-of-the-art performance on meta-learning neural fields in all modalities

PSNR: 28.58 PSNR: 23. 43 PSNR: 29.61
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Learnlt (MAML) TransINR GradNCP (Ours) Ground truth
Figure 6: Qualitative comparison between GradNCP and baselines on AFHQ (512x512).
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Analysis

Quality of the last layer approximation? Shows a high correlation with the full-layer gradient norm

* + Meta-learning automatically learns to improve this correlation
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Necessary to use gradient re-scaling when using the full context set during meta-testing
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Figure 7: Effect of meta-test time gradient re- Figure 8: Gradient norm of the full context set

scaling. We apply re-scaling when adapting with  Csy11 and the gradient norm-based pruned con-
full context set on SIREN trained with GradNCP.  text set C; gn at iteration k. 24



Thank you for your attention ©

For any more questions, please send us an email!

Email: jihoontack@gmail.com
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