Learning Large-scale Neural Fields via Context Pruned Meta-Learning

<u>Jihoon Tack</u>, Subin Kim, Sihyun Yu, Jaeho Lee, Jinwoo Shin, Jonathan Richard Schwarz

Neural Fields (NFs) / Implicit Neural Representations (INRs)

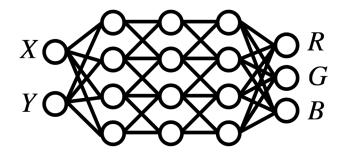
NFs represents signals as continuous coordinate-mapping functions parameterized by a neural net

For instance, an **RGB** image can be represented as a function taking a form

$$\begin{array}{ccc} \text{coords} & \longrightarrow & \text{values} \\ (X,Y) & \longrightarrow & (\text{R},\text{G},\text{B}) \\ \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \end{array}$$

$$f_{\text{img}}\left(\frac{76}{255}, \frac{152}{255}\right) = \left(0.95, 0.03, 0.04\right)$$

This can be learned by a neural network (usually a MLP) with $d_{in} = 2$, $d_{out} = 3$



$$\min_{\theta} \left\| f_{\text{img}} - f_{\theta} \right\|_{L_2}$$

Neural Fields have the **potential** to be a popular form of **data representation** in the near future!

• Interesting point 1. Effective at novel view synthesis (or resolution free!) [1,2]

Pixels

INR-decoder

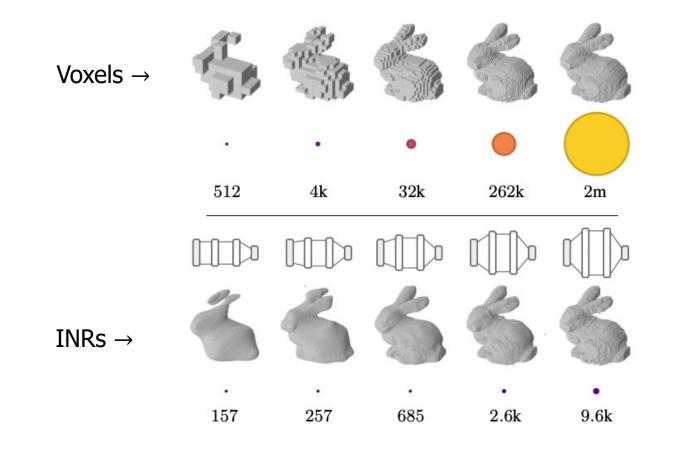
Rendering: Image \rightarrow 3D

Neural Fields have the **potential** to be a popular form of **data representation** in the near future!

• Interesting point 2. Represent complex signals [3,4], e.g., large-scale 3d scenes, videos

Neural Fields have the **potential** to be a popular form of **data representation** in the near future!

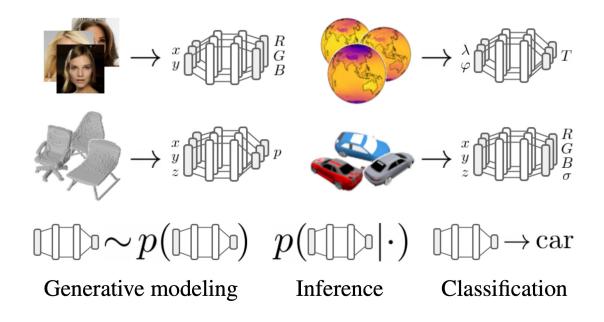
• Interesting point 3. Storage efficient [5]



[5] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022

Neural Fields have the **potential** to be a popular form of **data representation** in the near future!

• Interesting point 4. NF it-self can be used as a data point! [6,7]



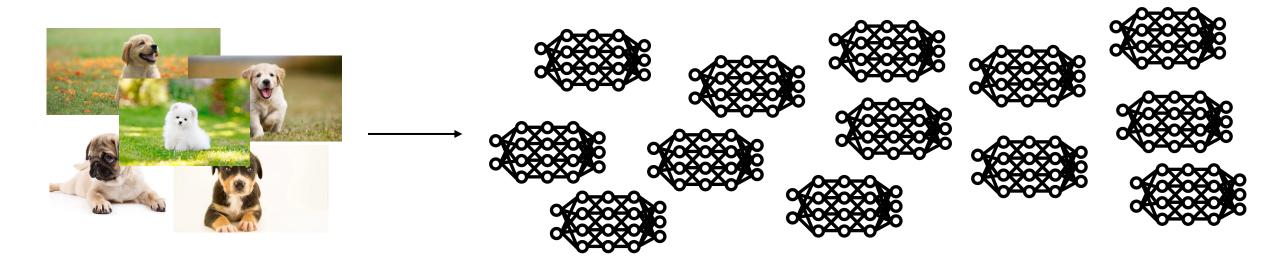
Step 1: Fit data points into INRs

Step 2: Run downstream tasks, e.g., classification

[6] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022 [7] Bauer et al., Spatial Functa: Scaling Functa to ImageNet Classification and Generation. ICLR workshop on Neural Fields 2023

An Obstacle

Q. Can we scale such an idea to a **Big Dataset**? / How to train a **foundation model** for NFs?



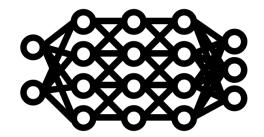
Imagine training **ImageNet number** of these....

An Obstacle

Q. Can we scale such an idea to a **Big Dataset**? / How to train a **foundation model** for NFs?

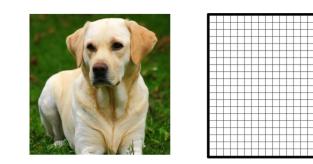
We mainly face three challenges

- how to fit neural fields in a parameter-efficient way
- how to fit neural fields in a time-efficient way
- how to fit neural fields in a memory-efficient way



Need to save a neural network...

Training time is costly...



Memory issue when learning high-resolution signals...

An Obstacle

Q. Can we scale such an idea to a Big Dataset? / How to train a foundation model for NFs?

We mainly face **three challenges**

- how to fit neural fields in a **parameter-efficient** way
- how to fit neural fields in a **time-efficient** way
- how to fit neural fields in a **memory-efficient** way

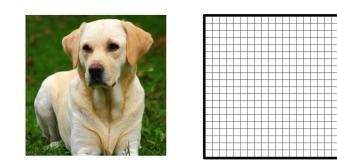
GradNCP (this paper)

 \rightarrow time and memory-efficient learning for neural fields

Time and parameter-efficient learning for neural fields? \rightarrow *Check our prior works* [8,9]

Need to save a neural network...

Training time is costly...



Memory issue when learning high-resolution signals...

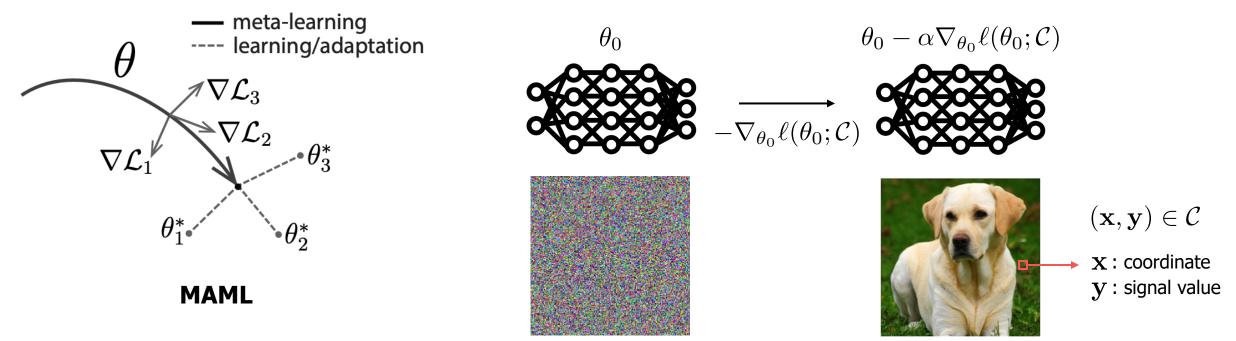
[8] Lee et al. Meta-Learning Sparse Implicit Neural Representations. NeurIPS 2021[9] Schwarz et al., Modality-Agnostic Variational Compression of Implicit Neural Representations. ICML 2023

Time-efficiency: Use Meta-Learning

Prior works have use meta-learning; **optimization-based meta-learning** shows versatile usages

 \rightarrow learning a good initialization [10]

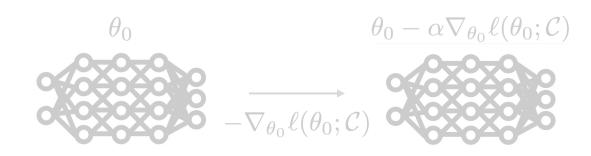
Objective? Find an initialization θ_0 such that **few-step gradients** can fit the signal



Time-efficiency: Use Meta-Learning

Prior works have use meta-learning; **optimization-based meta-learning** shows versatile usages \rightarrow learning a good initialization [10]

Objective? Find an initialization θ_0 such that **few-step gradients** can fit the signal



Train over multiple signals (batch of signals):

MAML

----- meta-learning

 $abla \mathcal{L}_2$

learning/adaptation

$$\theta_0 = \operatorname{argmin}_{\theta_0} \frac{1}{N} \sum_{i=1}^N \ell(\theta_0 - \alpha \nabla_{\theta_0} \ell(\theta_0; \mathcal{C}^{(i)}); \mathcal{C}^{(i)})$$

Hessian computation: memory scales linearly with the number of context set

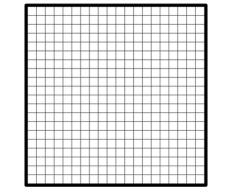
[10] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017

Time-efficiency: Use Meta-Learning

As the signal resolution increases *memory usage rapidly increases*

• Image with resolution 224 × 224? **Context set size of 50,176** (# of input coordinates)

MAML



For videos...? we should consider the timestep! \rightarrow e.g., 50,176 * 16 (about 800K)

Train over multiple signals (batch of signals):

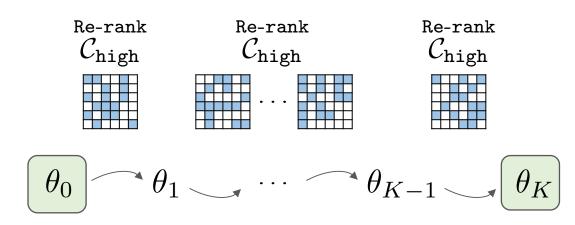
$$\theta_0 = \operatorname{argmin}_{\theta_0} \frac{1}{N} \sum_{i=1}^N \ell(\theta_0 - \alpha \nabla_{\theta_0} \ell(\theta_0; \mathcal{C}^{(i)}); \mathcal{C}^{(i)})$$

Hessian computation: memory scales linearly with the number of context set

[10] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017

High-level overview of GradNCP

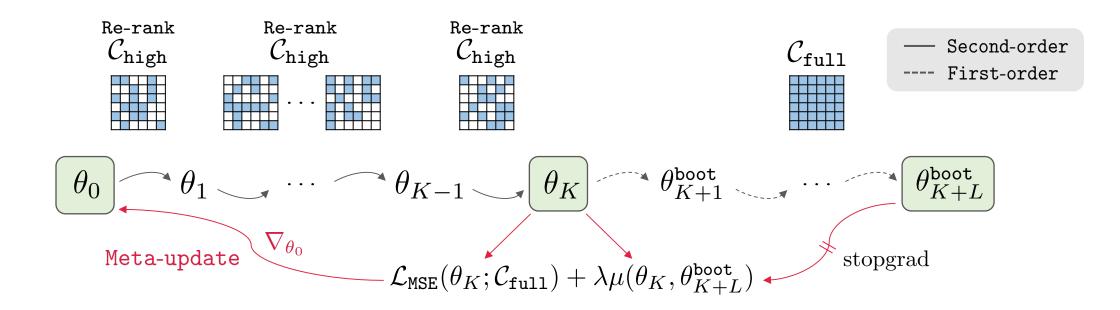
Idea1: Select the **most important context samples** for every adaptation step



High-level overview of GradNCP

Idea1: Select the **most important context samples** for every adaptation step

Idea2: Correct the error made by the context pruning

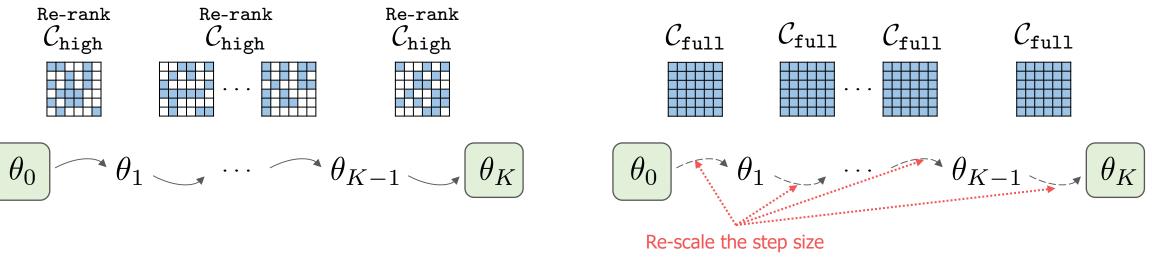


High-level overview of GradNCP

Idea1: Select the **most important context samples** for every adaptation step

Idea2: **Correct the error** made by the context pruning

Idea3: Re-scale the gradient step size when using the full context set during meta-testing



Meta-train

Meta-test

Gradient norm-based context pruning

How to select important samples efficiently?

- 1. Select a subset of data with the highest expected immediate improvement in model quality
- 2. Consider the last layer update only (quite a reasonable choice for NFs [9], also for meta-learning [11])

$$\ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\}) - \ell(\theta'_{k}; \{(\mathbf{x}, \mathbf{y})\})$$
(Immediate improvement in model quality)

$$\approx \ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\}) - \ell(\theta_{k} - \alpha g_{k}; \{(\mathbf{x}, \mathbf{y})\})$$
(Last layer update only)

$$\approx \ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\}) - \left(\ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\}) - \alpha g_{k}^{\top} \nabla_{\theta_{k}} \ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\})\right)$$
(Taylor approximation)

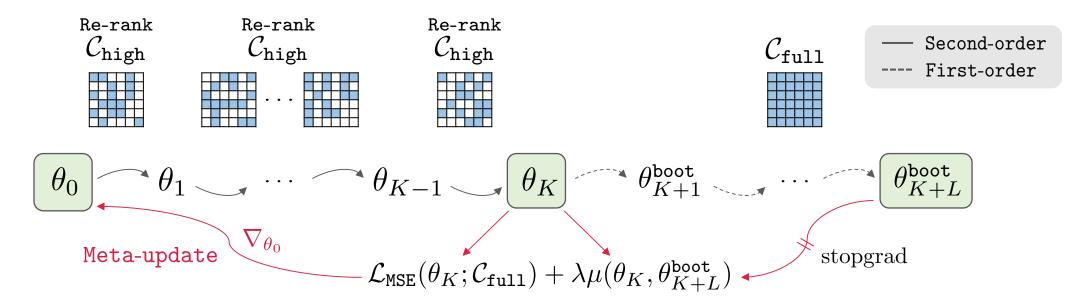
$$= \alpha g_{k}^{\top} \nabla_{\theta_{k}} \ell(\theta_{k}; \{(\mathbf{x}, \mathbf{y})\}) = \alpha ||g_{k}||_{2}^{2}$$
(Last layer gradient norm)

 \rightarrow This score can be calculated with only a single forward pass

$$R_k^{\operatorname{GradNCP}}(\mathbf{x}, \mathbf{y}) \coloneqq \left\| \left(\mathbf{y} - f_{\theta_k}(\mathbf{x}) \right) \left[\phi_{\theta_k^{\operatorname{base}}}(\mathbf{x}), \mathbf{1}
ight]^{\mathsf{T}}
ight\|$$

φ(.): penultimate featuref(.): network outputk: inner adaptation step

Bootstrapped correction



Information loss occurs as we prune out some context points

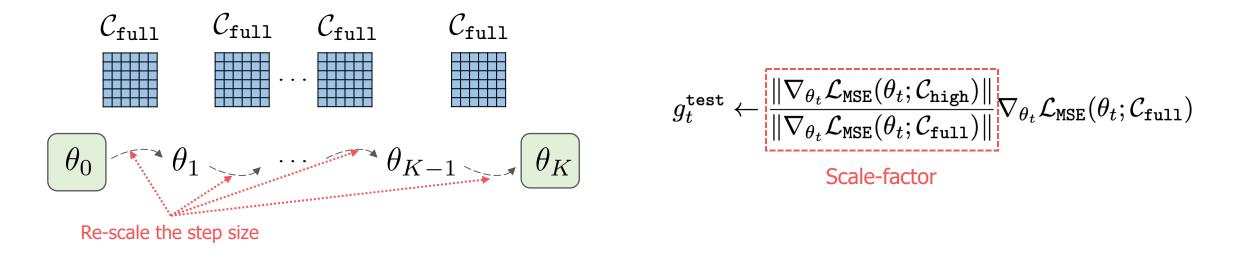
- Idea: further update the network with the full context set by using the first-order gradients
- After adapting this bootstrapped target θ_{K+L}^{boot} , minimize the parameter distance between θ_{K}

This bootstrapped target is also well-known to minimize the myopia (short-horizon bias) of optimization [12]

Gradient re-scaling

For meta-testing, we can use first-order gradients for adaptation (second-order is for learning init.) The **gradient step size deviates a lot** from meta-train (pruned set) and meta-test (full set)

- \rightarrow Gradient re-scaling: reducing the distributional shift between train/test
- Similar ideas can be found in Dropout (activation scaling) [13]



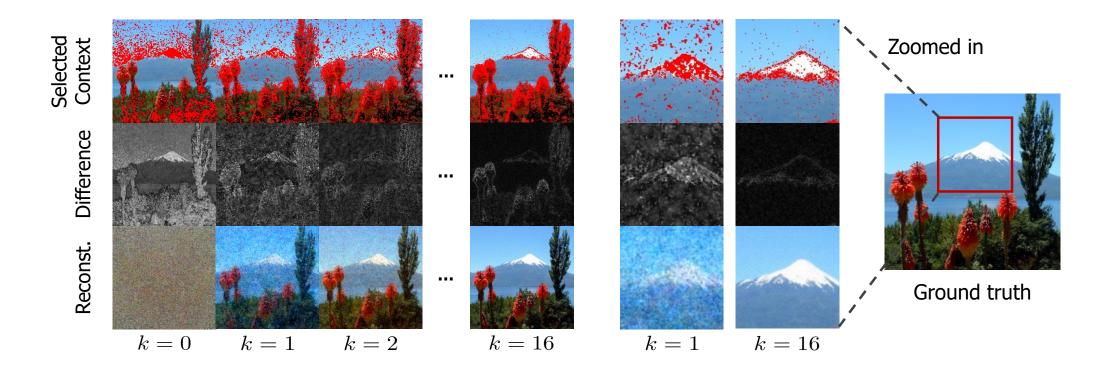
Overall algorithm

Algorithm 2 Meta-testing of GradNCP				
Algorithm 2 Meta-testing of GradNCP Input: Test signal s, learned initialization θ_0 , K_{test} 1: Extract context C_{full} from s. # Where typically $K_{test} > K + L$ 2: for all $t = 0$ to $K_{test} - 1$ do 3: # Context pruning 4: $C_{high} = TopK(C_{full}; R_t, \gamma)$ # Compute gradient scaling $g_t^{test} = \frac{\ \nabla_{\theta_t} \mathcal{L}_{MSE}(\theta_t, C_{high})\ }{\ \nabla_{\theta_t} \mathcal{L}_{MSE}(\theta_t, C_{full})\ } \nabla_{\theta_t} \mathcal{L}_{MSE}(\theta_t, C_{full})$ # Adaptation with full context 5: $\theta_{t+1} \leftarrow \theta_t - \alpha \cdot g_t^{test}$ 6: end for Output: $\mathcal{L}_{MSE}(\theta_T, \mathcal{C}_{full}), \theta_T$				

Visualization

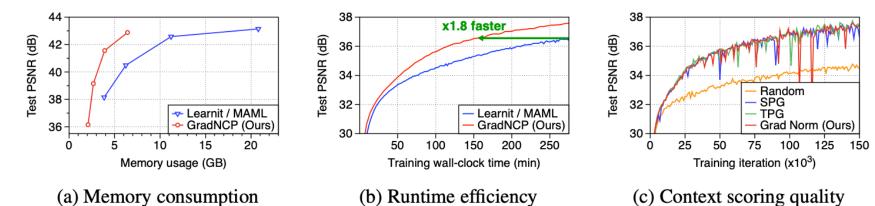
Visualization of the selected context point

- Interestingly, it automatically **captures the global shape first**, then captures the high-frequency details
- \rightarrow prior works do this in a hand-craft manner [14]

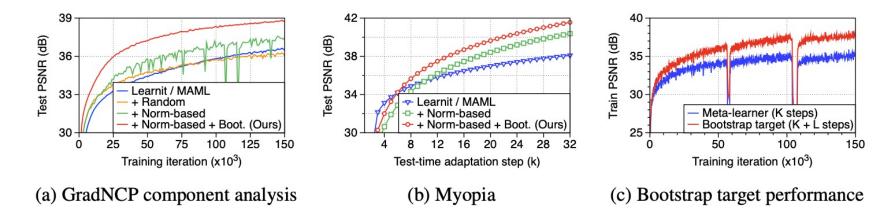


Results

Efficiency of GradNCP



Effectiveness of Bootstrapped correction



Results: Quantitative

Image

Video

GradNCP achieves state-of-the-art performance on meta-learning neural fields in all modalities

		CelebA (178×1)	78) I i	magenette ($178 \times 178)$	Text (178 \times	178)			PSN	JR (†)
Random Init.		19.94 / 0.532 / 0.7	708	18.57 / 0.44	43 / 0.810	15.37 / 0.574	/ 0.755	0	Method	1 sec	3 sec
TransINR [6]		32.37 / 0.913 / 0.0)68	28.58 / 0.85		22.70 / 0.898	/ 0.085	ndi	TransINR [6]	39.22	33.17
IPC [29]		551551	-	38.46 / -		•	/ -	P	IPC [29]	40.11	35.38
Learnit / MAML [61]		38.28 / 0.964 / 0.0		35.66 / 0.95		30.31 / 0.956			Learnit / MAML		31.39
GradNCP (Ours)		40.60 / 0.976 / 0.0	005	38.72 / 0.972 / 0.005		32.33 / 0.976 / 0.007			GradNCP (Ours) 43.25	36.24
		ImageNet (256×2	256)	AFHQ (51	2×512)	CelebA-HQ (102	4×1024)	σ			
Random Init. TransINR [6]		18.72 / 0.434 / 0.8	339	18.57 / 0.48	88 / 0.856	12.21 / 0.574	12.21 / 0.574 / 0.820		Method	PS	SNR (†)
		28.01 / 0.818 / 0.1		23.43 / 0.59	92/0.573	OOM		<u> </u>	Learnit / MAM	I [61]	54.91
Learnit / MAML [61]		31.44 / 0.887 / 0.1	00	28.58 / 0.75	51 / 0.354	27.66 / 0.781 / 0.513		an	GradNCP (Ou	L 1	75.11
GradNCP (Ours)		32.52 / 0.898 / 0.0)68	29.61 / 0.78	86 / 0.286	28.90 / 0.789 / 0.438		Σ			/ 3.11
Resolution	Network	Method	PSNR (†) SSIM (\uparrow)	LPIPS (\downarrow)		S	Metho	d PSN	NR	
128×128×16		TransINR [6]	15.14	0.360	0.636		R L	Learni	t [61] 22.	80	
		Learnit / MAML [61]	25.46	0.720	0.363		e		NR[6] 23.		
		GradNCP (Ours)	26.92	0.781	0.223		Ž		$\mathbf{NCP} (\mathbf{Ours}) 24.$		
	NeRV	Learnit (MAML) [61]	28.86	0.871	0.140	~					
	1 (OIC)	GradNCP (Ours)	35.28	0.959	0.015						
256×256×32		TransINR [6]		OOM		ho	Method		5-way 100-shot	10-way 50-s	hot
	SIREN	Learnit / MAML [61]		OOM		ne /-S	MAML [15	1	66.03±0.82	48.95±0.52	
		GradNCP (Ours)	22.92	0.640	0.521	3er ev	GradNCP		73.45±0.83	48.95±0.52 55.71±0.49	
	NeRV	Learnit / MAML [61]	23.75	0.659	0.422			(Cur s)	, 3.13 ± 0.03	00.71±0.4	
	1 1011 1	GradNCP (Ours)	28.65	0.842	0.201						

22

Results: Qualitative

GradNCP achieves state-of-the-art performance on meta-learning neural fields in all modalities

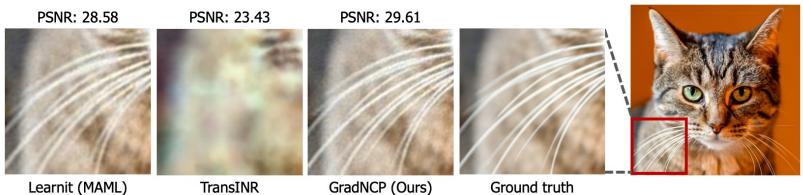
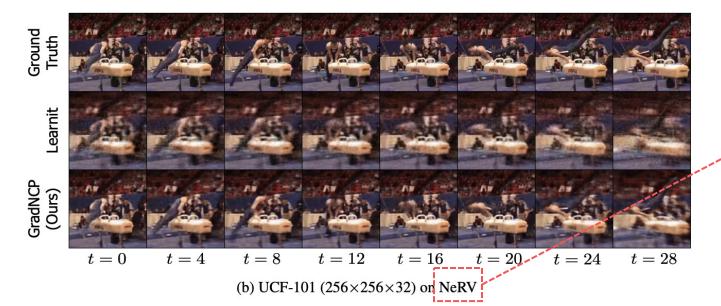


Figure 6: Qualitative comparison between GradNCP and baselines on AFHQ (512×512).

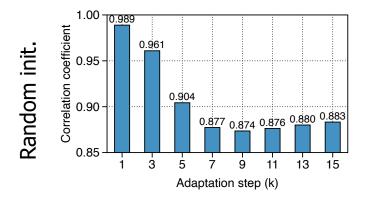


+ GradNCP is **model-agnostic framework** i.e., can be used for any neural fields

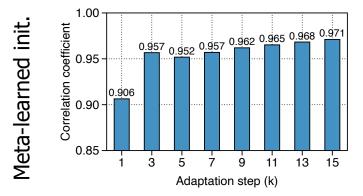
Analysis

Quality of the last layer approximation? Shows a high correlation with the full-layer gradient norm

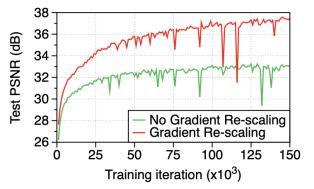
+ Meta-learning automatically learns to improve this correlation

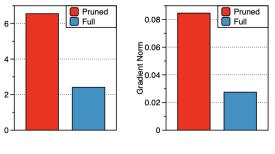


Gradient Norm



Necessary to use gradient re-scaling when using the full context set during meta-testing





(a) k = 0 (b) k = 15

Figure 7: Effect of meta-test time gradient rescaling. We apply re-scaling when adapting with full context set on SIREN trained with GradNCP. Figure 8: Gradient norm of the full context set C_{full} and the gradient norm-based pruned context set C_{high}^k at iteration k.

Reason for using gradient re-scaling: the gradient step size differs when using full/pruned context

Thank you for your attention ③

For any more questions, please send us an email!

Email: jihoontack@gmail.com