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INR (Implicit Neural Representation) is an emerging paradigm 
that uses neural nets for modeling individual data (instead of for, e.g., predictions)
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INR (Implicit Neural Representation) is an emerging paradigm 
that uses neural nets for modeling individual data (instead of for, e.g., predictions)

For instance, an RGB image can be represented as a function taking a form

This can be learned by a neural network with 𝑑!" = 2, 𝑑#$% = 3

Implicit Neural Representations
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INR has the potential to be a popular form of data representation in a near future!
• Interesting point 1. Effective at novel view synthesis (or resolution free!) [1,2]

Why is INR interesting? 
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[1] Chen et al. Learning Continuous Image Representation with Local Implicit Image Function. CVPR 2021
[2] Mildenhall et al. NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images. CVPR 2022

Pixels Bilinear INR-decoder
Rendering: Image → 3D



INR has the potential to be a popular form of data representation in a near future!
• Interesting point 2. Represent complex signals [1,2], e.g., large-scale 3d scenes, videos

Why is INR interesting? 
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[1] Tancik et al. Block-NeRF: Scalable Large Scene Neural View Synthesis. CVPR 2022
[2] Muller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. SIGGRAPH 2022



INR has the potential to be a popular form of data representation in a near future!
• Interesting point 3. Scalable (in terms of memory) [1]

Why is INR interesting? 

8[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022

Voxels →

INRs →



INR has the potential to be a popular form of data representation in a near future!
• Interesting point 4. INR it-self can be used as a data point!

Why is INR interesting? 

9[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022

Step 1: Fit data points into INRs Step 2: Run downstream tasks, e.g., classification



Q. Can we scale such an idea to a Big Dataset?

An Obstacle



Q. Can we scale such an idea to a Big Dataset?
A. No—at least for now—because of the cost to train & store all those models. 

An Obstacle

Imagine training ImageNet number of these.... 
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Wait... but we have many model compression techniques, right?
• What if we make pruned versions of INRs?  

• But generating sparse models takes a much longer training time!! (up to 10x)
(as we gradually prune them over extended training time) 

Naïve Way
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How can we generate such a sparse initial model? 

Method: Meta-SparseINR



How can we generate such a sparse initial model? 
• Combine meta-learning and network pruning!

Method: Meta-SparseINR

Meta-Learning Network pruning



Learning initializations of a network that
• adapts fast with a small number of gradient steps 

• can easily generalize to various model architecture and tasks

Model-Agnostic Meta-Learning (MAML) [1]

MAML

Objective of MAML on INRs?

Generalize on the signal after adapting with few-step gradients

[1] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017



For example, utilizing meta-learning on learning 3D shapes to efficiently adapt to new shapes [1]

Meta-Learning INRs

[1] Sitzmann et al. MetaSDF: Meta-Learning Signed Distance Functions, NeurIPS 2020



Which weight parameter to prune? 
• Sort the weight values and prune the parameters with small weights! 

Although MP is a somewhat old technique, it is still a very effective tool to prune the network

Magnitude Pruning (MP)

[1] Learning both Weights and Connections for Efficient Neural Networks, Han et al., NeurIPS 2015

small |𝜃!|
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Observation: Algorithms for pruning & efficient adaptation have one thing in common;

• Pruning: Removing edges with smallest weight magnitudes works surprisingly well! 

• Adaptation: Can be done via gradient-based meta-learning (e.g., MAML) using weights. 
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SIREN on CelebA, when we can use 100 gradient steps for fitting each signal. 

Experiments: Performance after 100 step training 

Random Pruning: Same as Meta-SparseINR, but use the random pruning
Dense-Narrow: Meta-learn a dense neural representation that has a narrower width than the original INR



Interestingly, sparse INRs tend to give more “structured” outputs. 

Experiments: Qualitative Comparisons



(a) Meta-SparseINR learns the signal much faster compared to other baselines
(b) Moreover, our method even shows effectiveness on cross-domain setup

Experiments: Adaptation Efficiency and Cross-domain



Summary of Meta-SparseINR

We develop a scalable method to learn 
sparse neural representations for a large set of signals

We combine meta-learning and network pruning to train a sparse initial model



There exist various follow-up studies in this direction
• Common idea: Only adapt few parameters for the meta-learning

Recent Trends in Meta-Learning (Storage-Efficient) INRs

Initialization Few-parameter update
(only save this part in the storage)

Target signal INR



There exist various follow-up studies in this direction
• Common idea: Only adapt few parameters for the meta-learning

Use the shifting modulation for the adaptation [1,2]

Recent Trends in Meta-Learning (Storage-Efficient) INRs

[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
[2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022
[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022

𝑖!" layer of INR

Globally shared parameters Task-specific parameter 
(shifting modulation)



There exist various follow-up studies in this direction
• Common idea: Only adapt few parameters for the meta-learning

Use a sparse gradient update through ℓ& regularization [3]

Recent Trends in Meta-Learning (Storage-Efficient) INRs

[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
[2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022
[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022

𝑧: zero mask (learn from ℓ" regularization)



This research direction also can be extended to data compression!
• These approaches even show comparable performance with existing compression techniques, e.g., JPEG

Recent Trends in Meta-Learning (Storage-Efficient) INRs

[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
[2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022
[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022



Summary

INR is an emerging paradigm for representing the data (or signals)

How to learn INRs for a large set of signals in an efficient manner?

Combine meta-learning and parameter-efficient learning schemes !

Thank you for your attention J


