

Meta-Learning Sparse Implicit Neural Representations

Jaeho Lee^{*1}, Jihoon Tack^{*1}, Namhoon Lee², Jinwoo Shin¹

Korea Advanced Institute of Science and Technology (KAIST)¹ Ulsan National Institute of Science and Technology (UNIST)²

Korean Conference on Computer Vision (KCCV) 2022

Conference on Neural Information Processing Systems (NeurIPS) 2021

* equal contribution

Implicit Neural Representations

INR (Implicit Neural Representation) is an emerging paradigm

that uses neural nets for modeling individual data (instead of for, e.g., predictions)

Implicit Neural Representations

INR (Implicit Neural Representation) is an emerging paradigm that uses neural nets for **modeling individual data** (instead of for, e.g., predictions)

For instance, an **RGB image** can be represented as a function taking a form

$$\begin{array}{ccc} \text{coords} & \longrightarrow & \text{values} \\ (X,Y) & \longrightarrow & (\text{R},\text{G},\text{B}) \\ \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \end{array}$$

$$f_{\text{img}}\left(\frac{76}{255}, \frac{152}{255}\right) = (0.95, 0.03, 0.04)$$

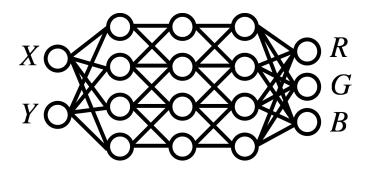
Implicit Neural Representations

INR (Implicit Neural Representation) is an emerging paradigm that uses neural nets for **modeling individual data** (instead of for, e.g., predictions)

For instance, an **RGB image** can be represented as a function taking a form

coords	\longrightarrow	values
(X, Y)	\longrightarrow	$(\mathbf{R}, \mathbf{G}, \mathbf{B})$
\mathbb{R}^2	\longrightarrow	\mathbb{R}^3

This can be learned by a neural network with $d_{in} = 2$, $d_{out} = 3$



$$\min_{\theta} \left\| f_{\text{img}} - f_{\theta} \right\|_{L_2}$$

INR has the **potential** to be a popular form of **data representation** in a near future!

INR has the **potential** to be a popular form of **data representation** in a near future!

• Interesting point 1. Effective at novel view synthesis (or resolution free!) [1,2]

Pixels

INR-decoder

Rendering: Image \rightarrow 3D

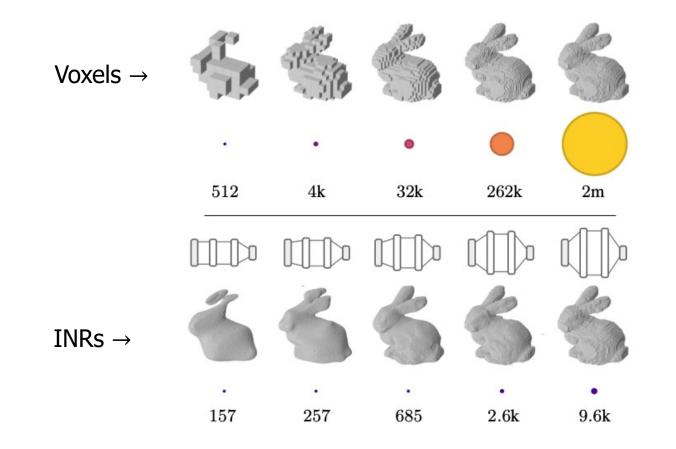
INR has the **potential** to be a popular form of **data representation** in a near future!

• Interesting point 2. Represent complex signals [1,2], e.g., large-scale 3d scenes, videos

[1] Tancik et al. Block-NeRF: Scalable Large Scene Neural View Synthesis. CVPR 2022[2] Muller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. SIGGRAPH 2022

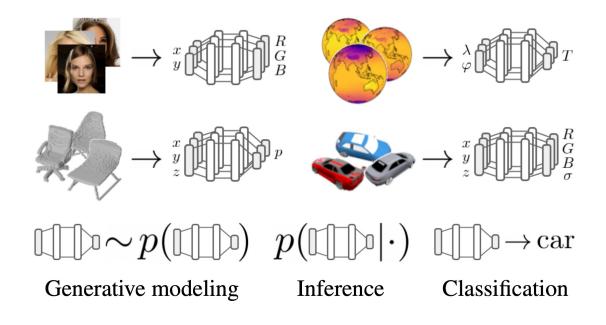
INR has the **potential** to be a popular form of **data representation** in a near future!

• Interesting point 3. Scalable (in terms of memory) [1]



INR has the **potential** to be a popular form of **data representation** in a near future!

• Interesting point 4. INR it-self can be used as a data point!



Step 2: Run downstream tasks, e.g., classification

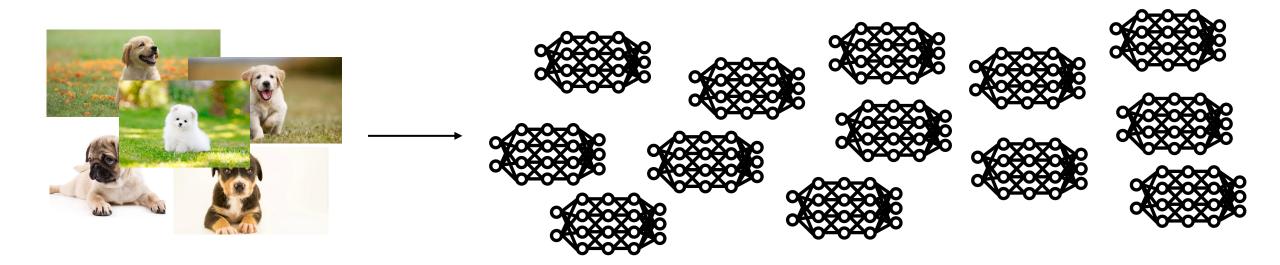
An Obstacle

Q. Can we scale such an idea to a **Big Dataset**?

An Obstacle

Q. Can we scale such an idea to a **Big Dataset**?

A. No—at least for now—because of the **cost to train & store** all those models.

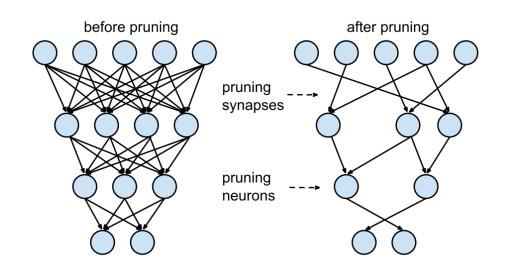


Imagine training ImageNet number of these....

Wait... but we have many **model compression** techniques, right?

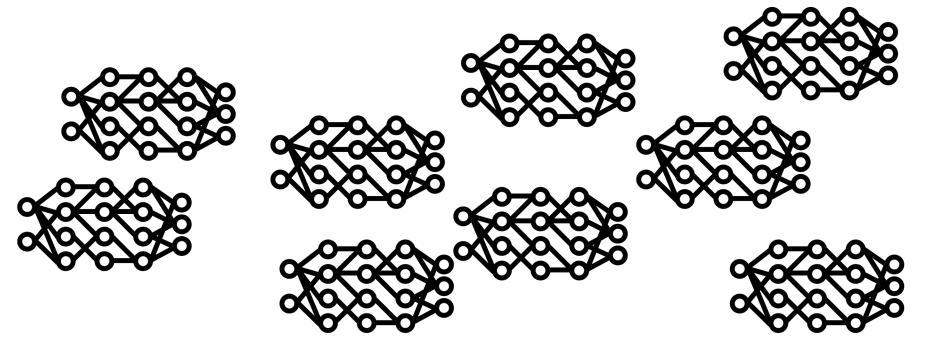
Wait... but we have many **model compression** techniques, right?

• What if we make **pruned** versions of INRs?



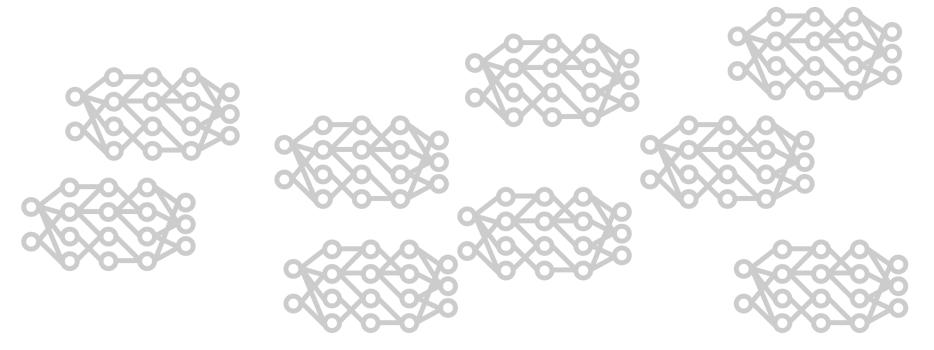
Wait... but we have many **model compression** techniques, right?

• What if we make **pruned** versions of INRs?



Wait... but we have many **model compression** techniques, right?

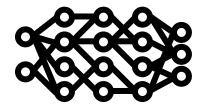
• What if we make **pruned** versions of INRs?



 But generating sparse models takes a much longer training time!! (up to 10x) (as we gradually prune them over extended training time)

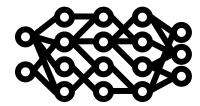
Can we make a **sparse initial model**?

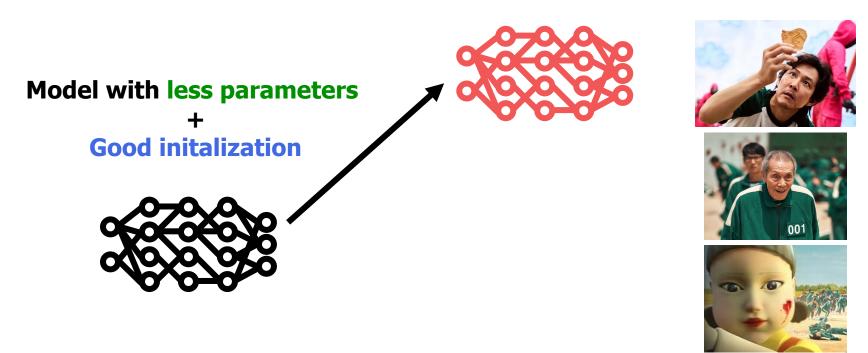
Model with less parameters + Good initalization

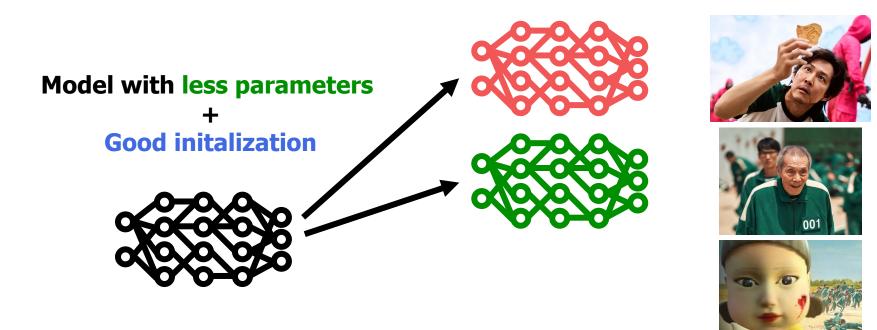


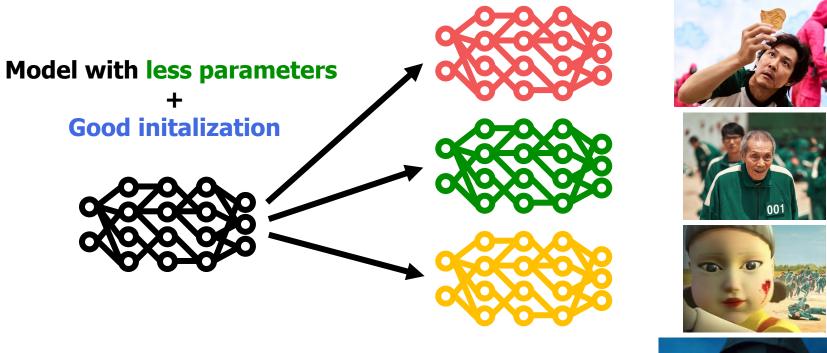
Can we make a **sparse initial model**, which can be **efficiently trained** to fit each signal?

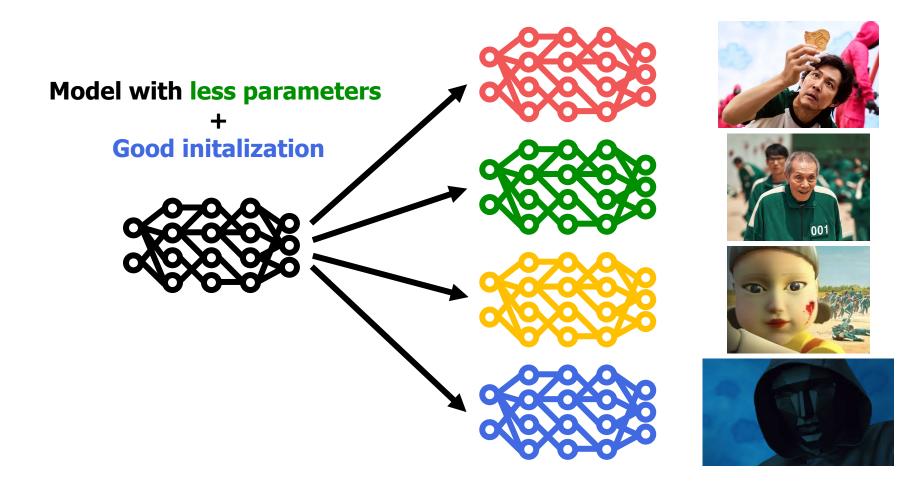
Model with less parameters + Good initalization







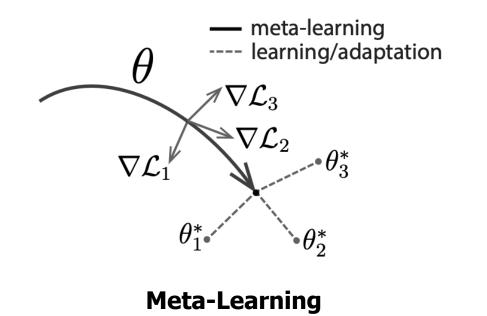


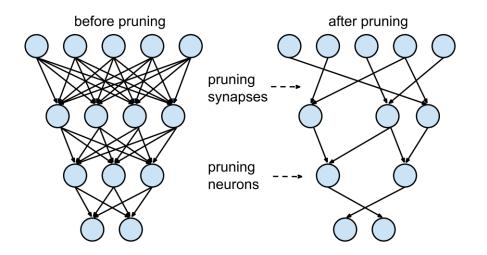


How can we generate such a **sparse initial model**?

How can we generate such a **sparse initial model**?

• Combine meta-learning and network pruning!



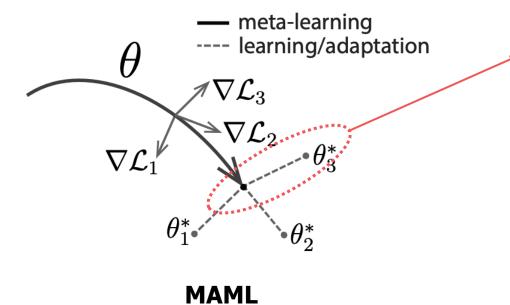


Network pruning

Model-Agnostic Meta-Learning (MAML) [1]

Learning **initializations** of a network that

- adapts fast with a small number of gradient steps
- can easily generalize to various model architecture and tasks



Objective of MAML on INRs?

Generalize on the signal after adapting with few-step gradients

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}\left(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})}\right)$$

[1] Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, ICML 2017

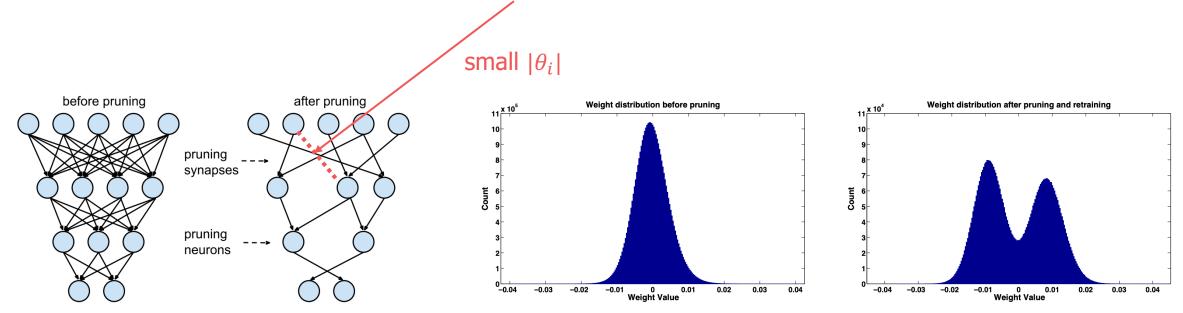
Meta-Learning INRs

For example, utilizing meta-learning on learning 3D shapes to efficiently adapt to new shapes [1]

Magnitude Pruning (MP)

Which weight parameter to prune?

• Sort the weight values and **prune the parameters with small weights**!



Although MP is a somewhat old technique, it is still a very effective tool to prune the network

How can we generate such **sparse initial model**?

Observation: Algorithms for pruning & efficient adaptation have one thing in common; **Network Weights** play an essential role!

- **Pruning:** Removing edges with <u>smallest weight magnitudes</u> works surprisingly well!
- Adaptation: Can be done via gradient-based meta-learning (e.g., MAML) using weights.

How can we generate such **sparse initial model**?

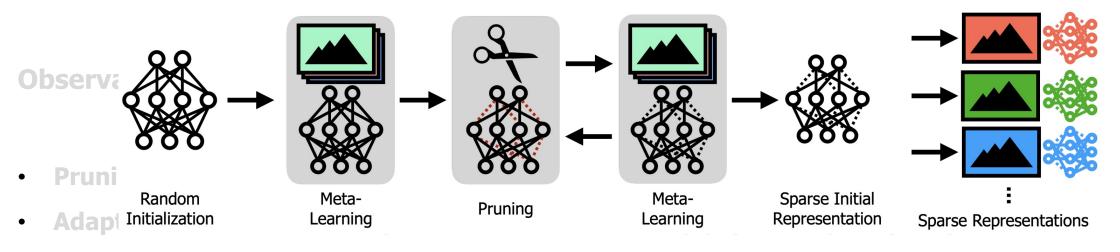
Observation: Algorithms for pruning & efficient adaptation have one thing in common; **Network Weights** play an essential role!

- **Pruning:** Removing edges with <u>smallest weight magnitudes</u> works surprisingly well!
- Adaptation: Can be done via gradient-based meta-learning (e.g., MAML) using weights.

Idea: Meta-learned weights can be directly used as a pruning saliency score:

- 1. Meta-train a INR on a set of signals
- 2. Prune some connections based on meta-learned weights
- 3. Repeat

How can we generate such **sparse initial model**?

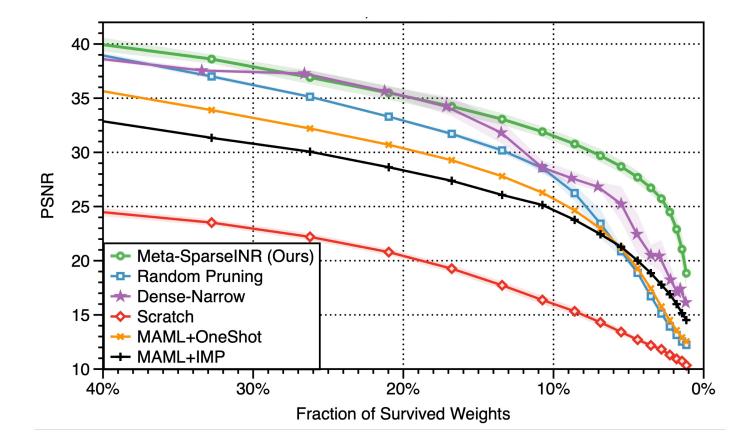


Idea: Meta-learned weights can be directly used as a pruning saliency score:

- 1. Meta-train a INR on a set of signals
- 2. Prune some connections based on meta-learned weights
- 3. Repeat

Experiments: Performance after 100 step training

SIREN on CelebA, when we can use 100 gradient steps for fitting each signal.

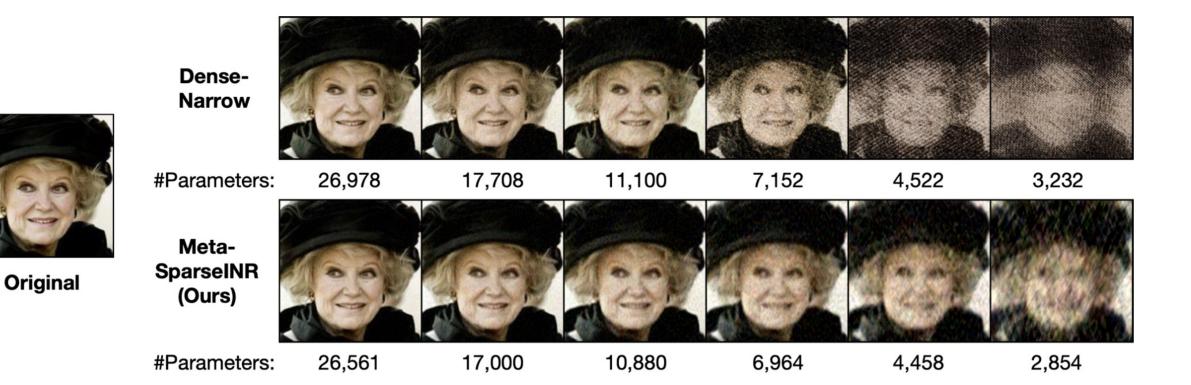


Dataset	Method	PSNR	#Params
CelebA	Meta-SparseINR (Ours)	27.70	8,704
CelebA	Random Pruning	26.24	17,000
CelebA	Dense-Narrow	27.63	17,708
Imagenette	Meta-SparseINR (Ours)	25.73	8,704
Imagenette	Random Pruning	24.06	17,000
Imagenette	Dense-Narrow	24.75	14,212
SDF	Meta-SparseINR (Ours)	49.87	8,704
SDF	Random Pruning	47.42	17,000
SDF	Dense-Narrow	44.35	26,978

Random Pruning: Same as Meta-SparseINR, but use the random pruning **Dense-Narrow**: Meta-learn a dense neural representation that has a narrower width than the original INR

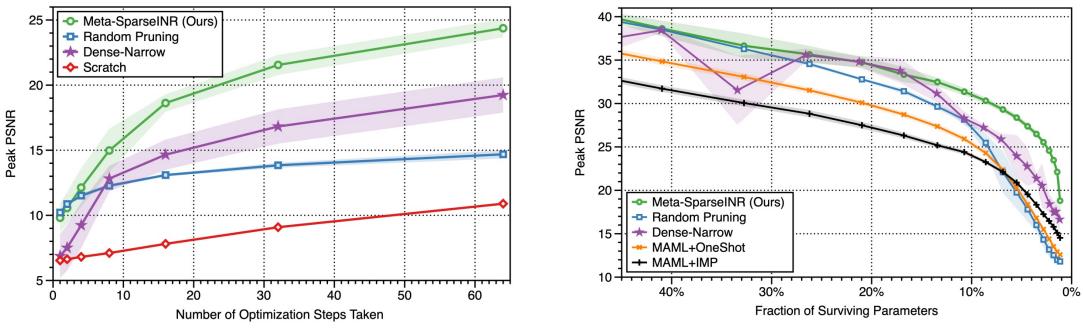
Experiments: Qualitative Comparisons

Interestingly, sparse INRs tend to give more "structured" outputs.



Experiments: Adaptation Efficiency and Cross-domain

- (a) Meta-SparseINR learns the signal **much faster** compared to other baselines
- (b) Moreover, our method even shows effectiveness on **cross-domain setup**



(a) PSNR vs. number of optimization steps

(b) Imagenette \rightarrow CelebA

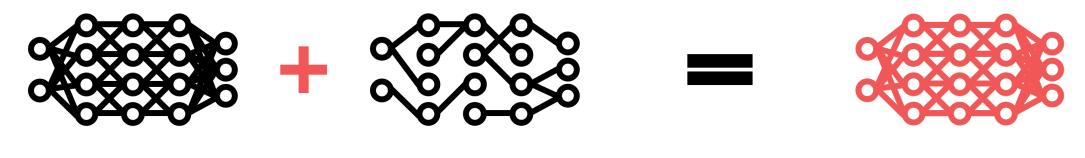
Summary of Meta-SparseINR

We develop a scalable method to learn sparse neural representations for a **large set of signals**

We combine **meta-learning** and **network pruning** to train a sparse initial model

There exist various follow-up studies in this direction

• Common idea: **Only adapt few parameters** for the meta-learning



Initialization

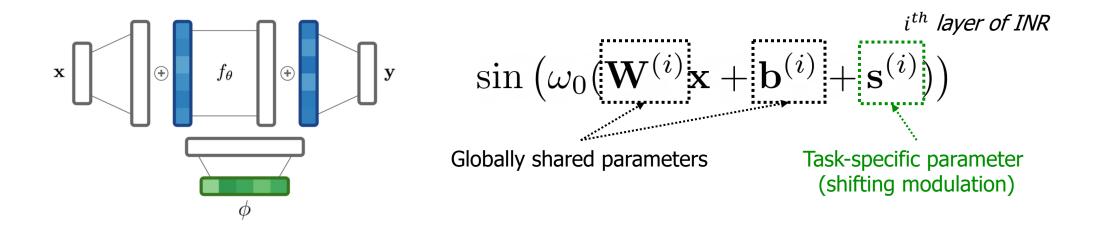
Few-parameter update (only save this part in the storage)

Target signal INR

There exist various follow-up studies in this direction

• Common idea: **Only adapt few parameters** for the meta-learning

Use the **shifting modulation** for the adaptation [1,2]



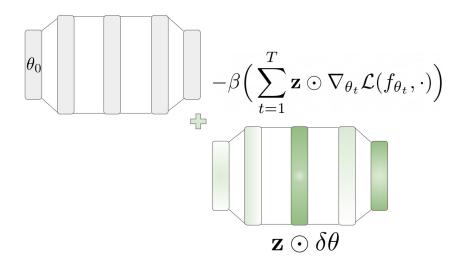
[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
[2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022

[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022

There exist various follow-up studies in this direction

Common idea: Only adapt few parameters for the meta-learning

Use a **sparse gradient update** through ℓ_0 regularization [3]



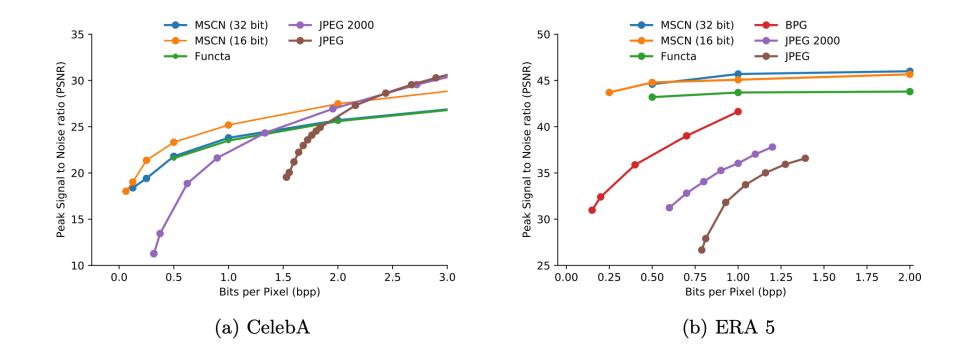
z: zero mask (learn from ℓ_0 regularization)

[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022
 [2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022

[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022

This research direction also can be extended to **data compression**!

• These approaches even show comparable performance with existing compression techniques, e.g., JPEG



[1] Dupont et al. From data to functa: Your data point is a function and you should treat it like one. ICML 2022[2] Dupont et al. COIN++: Neural Compression Across Modalities. arXiv 2022

[3] Schwarz et al. Meta-Learning Sparse Compression Networks, TMLR 2022

INR is an emerging paradigm for representing the data (or signals)

How to learn INRs for **a large set of signals** in an efficient manner?

Combine meta-learning and parameter-efficient learning schemes !

Thank you for your attention ©