Meta-learning Sparse Implicit Neural Representations KAIST +UNIST *****equal Jaeho Lee^{*} Jihoon Tack^{*} Namhoon Lee Jinwoo Shin jaeho-lee@kaist.ac.kr

Summary. Implicit Neural Representation (INR) is a new paradigm to represent each data point as a neural net. We propose a compute efficient meta-learning method to train sparse INRs of a dataset.

Background

INR represents each data as a neural network approximating coordinate-to-signal mappings. For instance, an RGB image can be represented by a function $f_{\theta} : \mathbb{R}^2 \to \mathbb{R}^3$

INRs became popular, as it has several practical advantages over classical methods (e.g., pixels).

Challenge: Scalability

If we want to represent a large-scale dataset, we need a huge computation & storage capacity.

Q. Can we efficiently train <u>Sparse INRs</u> for a large number of data? \approx How can we efficiently train sparse models for multiple related datasets?

Framework

We formulate this problem as learning a good "Sparse Initial INR" which requires small training budget to fit each data.

Formally, we can write as

Here, $(M, \theta^{(0)})$ is the mask & initial parameter, $\theta^{(t)}(T_i, \theta^{(0)})$ denote a *t*-step SGD-updated $\theta^{(0)}$ to fit the image T_i , and \mathscr{L}_i denotes the loss with respect to the image T_i .

Method: Meta-Sparse INR

We propose using a three-step procedure. **1.** Train an initialized INR over a set of images using a meta-learning algorithm (e.g., MAML). **2.** Prune a fraction of surviving weights using the

- magnitude-based pruning.
- **3.** Retrain the INR, and go back to **2** (if needed)

*Note: Pruning-at-initialization methods didn't outperform dense-narrow baselines, even for a single image case.

Experiment

SparseINR (Ours)

#Parameters:

26,56

Our method outperforms dense-narrow baselines when given a fixed fine-tuning budget.

Dataset	Method	PSNR	#Params
CelebA	Meta-SparseINR (Ours)	27.71	8,704
CelebA	Random Pruning	26.25	17,000
CelebA	Dense-Narrow	27.68	17,708
Imagenette	Meta-SparseINR (Ours)	25.74	8,704
Imagenette	Random Pruning	24.09	17,000
Imagenette	Dense-Narrow	24.76	14,212
SDF	Meta-SparseINR (Ours)	49.92	8,704
SDF	Random Pruning	47.48	17,000
SDF	Dense-Narrow	44.61	26,978

SIREN on CelebA, Imagenette and SDF, when one use 100 SGD steps for fitting.

PSNR vs. number of optimization step

Two-step optimization

17,000

10,880

6,964

4,458