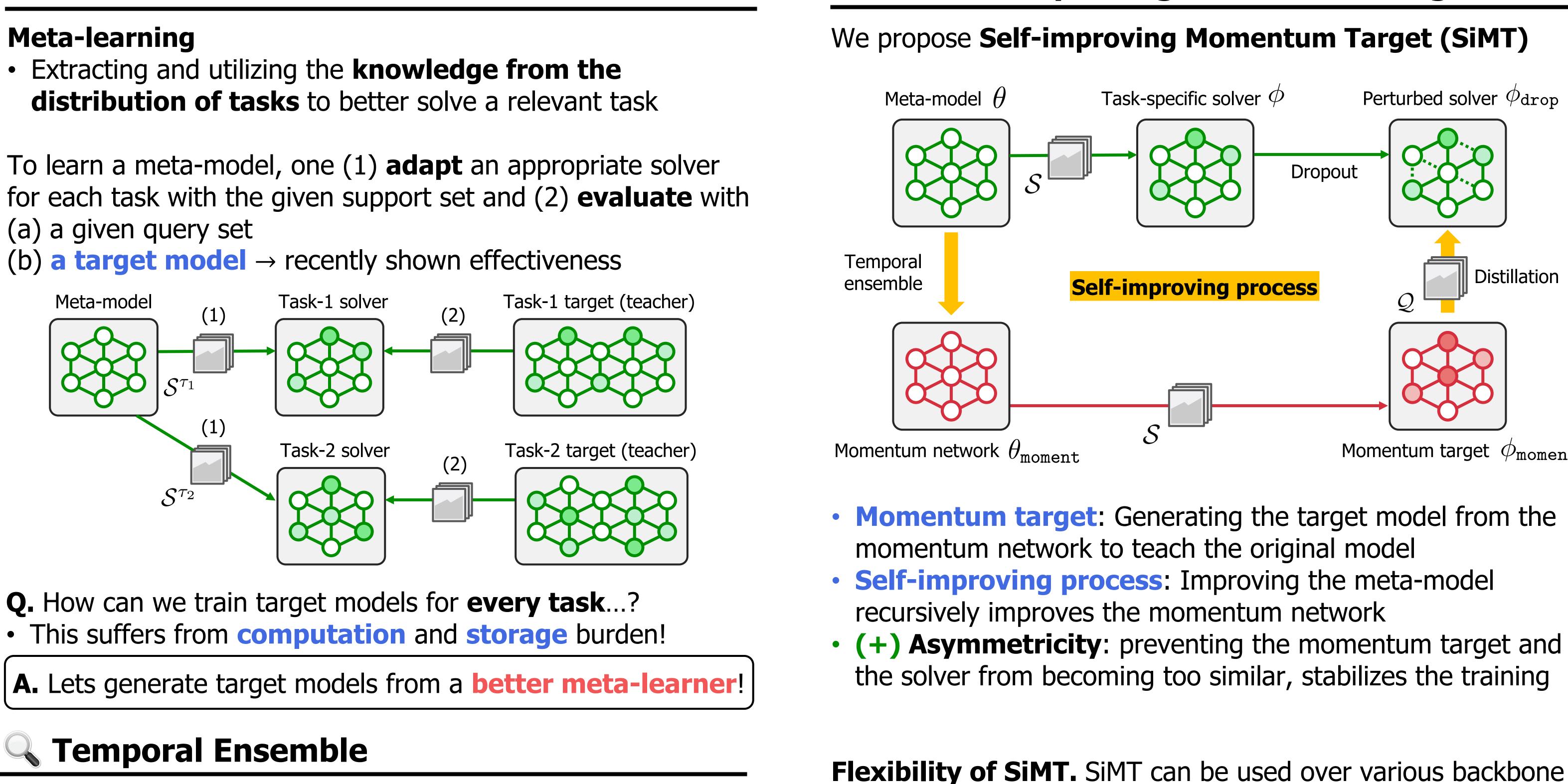
Meta-Learning with Self-Improving Momentum Target

Jihoon Tack¹, Jongjin Park¹, Hankook Lee¹, Jaeho Lee², Jinwoo Shin¹

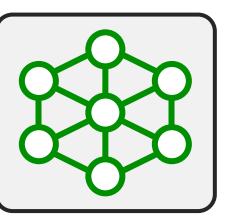

Korea Advanced Institute of Science and Technology (KAIST)¹, Pohang University of Science and Technology (POSTECH)²

We propose a meta-learning algorithm to generate a target model from which we distill TL;DR. the knowledge to the meta-model, forming a virtuous cycle of improvements

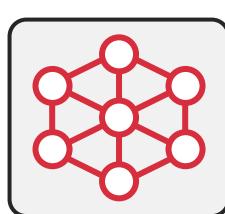
Introduction

Meta-learning

- (a) a given query set



Temporal


ensemble

We find that the **temporal ensemble** of the meta-model is a better meta-learner, i.e., a better adaptation performance

Meta-model

Momentum network

 $\theta_{\texttt{moment}} \leftarrow \eta \cdot \theta_{\texttt{moment}} + (1 - \eta) \cdot \theta$

Learning from the query set

SiMT: Self-improving Momentum Target

Momentum target ϕ_{moment}

meta-learning methods, including gradient- and model-based.

 $(1 - \lambda) \cdot \mathcal{L}(\phi_{\mathtt{drop}}, \mathcal{Q}) + \lambda \cdot \mathcal{L}_{\mathtt{teach}}(\phi_{\mathtt{drop}}, \phi_{\mathtt{target}}, \mathcal{Q})$

Learning from the momentum target

Experimental Results

Main results. SiMT shows the effectiveness for three parts: (1) few-shot regression, (2) few-shot classification, and (3) meta-reinforcement learning. *See the paper for other results*

Conv4 [55]

ResNet-12 [34]

Comparison with other target models [1,2]

	mini-In	nageNet	tiered-ImageNet		
Method	1-shot	5-shot	1-shot	5-shot	
MAML [10] MAML [10] + Bootstrap [16] MAML [10] + SiMT	47.33 ± 0.45 48.68 ± 0.33 51.49 \pm 0.18	$\begin{array}{c} 63.27 {\pm} 0.14 \\ 68.45 {\pm} 0.40 \\ \textbf{68.74 {\pm} 0.12} \end{array}$	$\begin{array}{c} 50.19 {\pm} 0.21 \\ 49.34 {\pm} 0.26 \\ \textbf{52.51} {\pm} \textbf{0.21} \end{array}$	66.05 ± 0.1 68.84 ± 0.3 69.58 ± 0.1	
ANIL [36] ANIL [36] + Bootstrap [16] ANIL [36] + SiMT	47.71 ± 0.47 47.74 ± 0.44 50.81 ± 0.56	63.13 ± 0.43 65.16 ± 0.04 67.99 ± 0.19	$\begin{array}{r} 49.57 {\pm} 0.04 \\ 48.85 {\pm} 0.34 \\ \textbf{51.66 {\pm} 0.26} \end{array}$	66.34 ± 0.2 66.09 ± 0.0 68.88 ± 0.0	

	1-shot train cost	mini-ImageNet		tiered-ImageNet	
Method	(GPU hours)	1-shot	5-shot	1-shot	5-shot
MAML [10]*	1.31	$58.84 {\pm} 0.25$	$74.62 {\pm} 0.38$	$63.02 {\pm} 0.30$	$67.26 {\pm} 0.32$
MAML [10] + Lu et al. [32] - 5%*	5.04	59.14 ± 0.33	$75.77 {\pm} 0.29$	$64.52 {\pm} 0.30$	$68.39{\pm}0.34$
MAML [10] + Lu et al. [32] - $10\%^*$	8.32	$60.06 {\pm} 0.35$	$76.34{\pm}0.42$	65.23 ±0.45	$70.02{\pm}0.33$
MAML $[10]$ + SiMT	1.64	62.05±0.39	78.77 ±0.45	$63.91{\pm}0.32$	77.43 ±0.47

	mini-ImageNet		tiered-ImageNet	
Method	1-shot	5-shot	1-shot	5-shot
MAML [10] MAML [10] + SiMT	47.33 ± 0.45 51.49 ± 0.18	63.27±0.14 68.74±0.12	$\begin{array}{c} 50.19{\pm}0.21\\ \textbf{52.51}{\pm}\textbf{0.21}\end{array}$	66.05±0.19 69.58±0.11
ANIL [36] ANIL [36] + SiMT	47.71±0.47 50.81±0.56	63.13±0.43 67.99±0.19	49.57±0.04 51.66±0.26	$\begin{array}{c} 66.34{\pm}0.28\\ \textbf{68.88}{\pm}\textbf{0.08}\end{array}$
MetaSGD [31] MetaSGD [31] + SiMT	$\begin{array}{c} 50.66 {\pm} 0.18 \\ \textbf{51.70} {\pm} \textbf{0.80} \end{array}$	$65.55 {\pm} 0.54$ 69.13 ${\pm} 1.40$	$52.48{\pm}1.22\\52.98{\pm}0.07$	71.06±0.20 71.46 ± 0.12
ProtoNet [45] ProtoNet [45] + SiMT	$\begin{array}{c} 47.97 {\pm} 0.29 \\ \textbf{51.25} {\pm} \textbf{0.55} \end{array}$	65.16±0.67 68.71±0.35	51.90±0.55 53.25±0.27	71.51±0.25 72.69±0.27
MAML [10] MAML [10] + SiMT	$52.66{\pm}0.60\\ \textbf{56.28}{\pm}\textbf{0.63}$	$\begin{array}{c} 68.69 {\pm} 0.33 \\ \textbf{72.01} {\pm} \textbf{0.26} \end{array}$	57.32±0.59 59.72±0.22	$73.78 {\pm} 0.27 \\ \textbf{74.40} {\pm} \textbf{0.90}$
ANIL [36] ANIL [36] + SiMT	51.80±0.59 54.44±0.27	68.38±0.20 69.98±0.66	$57.52{\pm}0.68\\\textbf{58.18{\pm}0.31}$	$\begin{array}{c} 73.50 {\pm} 0.35 \\ \textbf{75.59} {\pm} \textbf{0.50} \end{array}$
MetaSGD [31] MetaSGD [31] + SiMT	54.95±0.11 55.72±0.96	$70.65{\pm}0.43\\\textbf{74.01}{\pm}\textbf{0.79}$	$\begin{array}{c} 58.97 {\pm} 0.89 \\ \textbf{61.03} {\pm} \textbf{0.05} \end{array}$	$76.37{\pm}0.11\\\textbf{78.04{\pm}0.48}$
ProtoNet [45] ProtoNet [45] + SiMT	$52.84{\pm}0.21\\55.84{\pm}0.57$	$\begin{array}{c} 68.35 {\pm} 0.29 \\ \textbf{72.45} {\pm} \textbf{0.32} \end{array}$	61.16±0.17 62.01±0.42	$\begin{array}{c} 79.94{\pm}0.20\\ \textbf{81.82}{\pm}\textbf{0.12} \end{array}$